Êýѧѧ¿Æ·¢Õ¹Õ½Êõ×êÑлáôßÊýѧ´ó¼Ò½²Ì³Ë³ÀûÕÙ¿ª

°ä²¼¹¦·ò£º2023-04-23Ͷ¸å£º»ÆÀ× ä¯ÀÀ´ÎÊý£º

20230423-3.png

Ϊ½øÒ»²½Ã÷ȷб¦GGÊýѧѧ¿ÆÕ½Êõ¹æ»®ºÍ·¢Õ¹·½Ïò £¬Íƶ¯Ñ§¿Æ¸ßÖÊÁ¿·¢Õ¹ £¬Ð±¦GGÊýѧѧ¿Æ·¢Õ¹×êÑлáôßÊýѧ´ó¼Ò½²Ì³ÓÚ4ÔÂ19ÈÕÖÁ21ÈÕÔÚУ±¾²¿Ë³ÀûÕÙ¿ª¡£

20230423-4.png

4ÔÂ19ÈÕÏÂÎç £¬³ÛÃûÀûÓÃÊýѧ¼Ò¡¢¹ú¶ÈÌìÈ»¿ÆÑ§»ù½ðίÊýÀíѧ²¿Ö÷ÈΡ¢±±¾©ÀûÓÃÎïÀíÓëÍÆËãÊýѧ×êÑÐËù½­ËÉԺʿ £¬Öйú¿ÆÑ§Ôº¡¢ÄÏ¿ª´óѧ³ÂÊ¡ÉíÊýѧ×êÑÐËùÕÅΰƽԺʿ £¬µÚÊ®ËĽìÈ«¹úÕþЭίԱ¡¢Öйú¿ÆÑ§ÔºÖÜÏòÓîԺʿ £¬ÉϺ£½»Í¨´óѧÊýѧ¿ÆÑ§Ñ§Ôº½²Ï¯½ÌÊÚÍõÑǹâ½ÌÊÚ £¬Ð±¦GG¸±Ð£³¤ÎâÃ÷ºìԺʿ £¬»ù´¡×êÑÐÓë¹ú¼ÊºÏ×÷´¦´¦³¤ÕçÇ¿½ÌÊÚ £¬ÀíѧԺµ³Î¯Êé¼ÇÊ¢Íò³É½ÌÊÚ £¬µ³Î¯¸±Êé¼Ç¡¢¼ÍίÊé¼ÇÁõ¼ûÀñ £¬¸±Ôº³¤Ó೤¾ý £¬Êýѧϵµ³Õþ°à×Ó³ÉÔ±ºÍÊýѧϵÀÏʦ´ú±í²ÎÓë×êÑлá¡£

×êÑлῪĻʽǰб¦GGµ³Î¯Êé¼Ç³Éµ©ºìµÈ»á¼ûÁ˽­ËÉ¡¢ÕÅΰƽ¡¢ÖÜÏòÓîÈýλԺʿ £¬²¢½øÐÐÁËÇ×Çн»Ì¸¡£×êÑлáÓÉÀíѧԺµ³Î¯Êé¼ÇÊ¢Íò³É½ÌÊÚÖ÷³Ö¡£¿ªÄ»Ê½ÉÏ £¬¸±Ð£³¤ÎâÃ÷ºìԺʿÔÚÖ´ÇÖжԽ­ËÉԺʿµÈÒ»Ðеĵ½À´°µÊ¾ÈÈÁÒÓ­½Ó £¬Ëý½éÉÜÁËѧÌõķ¢Õ¹¹ý³ÌºÍÊýѧѧ¿ÆµÄº¹Çà¡£ËýÇ¿µ÷ £¬Êýѧѧ¿ÆÊÇÒ»ÃųÁÒªµÄ»ù´¡Ñ§¿Æ £¬Ñ§ÌÃ¸ß¶ÈÆ÷³ÁÊýѧѧ¿Æ½¨Éè £¬µ«Ô¸Óë»áר¼Ò¶ÔÊýѧѧ¿ÆµÄ½¨ÉèÓë·¢Õ¹Ìá³öÁìµ¼ÐÔ¶¨¼û £¬ÍƽøÊýѧѧ¿ÆµÄ·¢Õ¹¡£

20230423-5.png

20230423-6.png

20230423-7.png

20230423-8.png

20230423-9.png

20230423-10.png

ÊýѧϵÖ÷ÈÎÕźìÁ«½ÌÊÚÊ×ÏÈÏòÓë»áר¼Ò½éÉÜÁËÊýѧѧ¿ÆÔÚ·¢Õ¹¹ý³Ì¡¢Ê¦×Ê¡¢¿ÆÑн²ÊÚÓëÈ˲ÅÔì¾ÍµÈ·½ÃæµÄ½ü¿öºÍ·¢Õ¹ÌôÕ½¡£Óë»áר¼Ò¶ÔÊýѧѧ¿ÆÄ¿Ç°µÄ»ù´¡ºÍ·¢Õ¹´ÍÓë¸ß¶ÈÆÀ¼Û¡£½­ËÉԺʿָ³ö £¬ÊýѧÊÇ»ù´¡×êÑеĻù´¡ £¬Õ¼ÓÐ׳´óµÄÊýѧѧ¿Æ £¬ÄÜÁ¦ÓÐÁ¦µØÖ§³ÖºÍÖ§³Ö»ù´¡×êÑеļ±¾ç·¢Õ¹ £¬Íƶ¯ÓйØÎÊÌâµÄ½â¾öºÍ¿Æ¼¼´´Ð·¢Õ¹¡£½üÄêÀ´ £¬¹ú¶È´óÁ¦Ö§³ÖÊýѧ·¢Õ¹ £¬Ïà¼Ì³ǫ̈Á˶à·Ý¼ÓÇ¿Êýѧ×êÑеÄÎļþ £¬³ÉÁ¢¶à¸ö¹ú¶È¼¶ÊýѧÖÐÐÄ £¬Ê©ÐÓ×°ÊýѧºÍÀûÓÃ×êÑÓ×±³ÁµãÑз¢×¨ÏîÏîÄ¿ £¬ÊýѧÔÚ½¨Éè¿Æ¼¼Ç¿¹úÖеĵØÎ»Ô½À´Ô½³ÁÒª¡£ÖÜÏòÓîԺʿ̸µ½ £¬Êýѧѧ¿ÆµÄÌØÊâÐÔ £¬»ù´¡Ñ§¿ÆµÄ·¢Õ¹Àë²»¿ªÑ§ÌôóÁ¦Ö§³Ö¡£ÕÅΰƽԺʿ˵£ºË¼¿¼Êýѧѧ¿ÆµÄ×êÑгɾÍÖÜÆÚ³¤µÄÌØÊâÐÔ £¬±ØÒªÌØÊâµÄÈ˲ÅÕþ²ßÓèÒÔÖ§³Ö¡£»¥»»ÖÐ £¬ÍõÑǹâ½ÌÊÚÖ¸³ö £¬Í¨¹ý¼ÓÇ¿ÉϺ£ÐÖµÜԺУµÄºÏ×÷»¥»» £¬´ïµ½Êýѧѧ¿Æ¿ÉÄܸüºÃµØ·þÎñ¹ú¶ÈºÍ´¦Ëù³Á´óÐèÒªµÄÖ¸±ê¡£´Ë±íÓë»áר¼Ò»¹¾ÍÊýѧѧ¿Æ¸ßˮƽÆÚ¿¯È϶¨¡¢¿ÆÑÐÆ½Ì¨½¨Éè¡¢¸ßˮƽÈ˲ÅÐÐÁн¨ÉèµÈ·½Ã潨ÑÔÏײß¡£¸±Ð£³¤ÎâÃ÷ºìԺʿÔÚ×ܽὲ»°ÖаµÊ¾ £¬ÖÔÐĸм¤¸÷λר¼Ò¶ÔÊýѧѧ¿ÆµÄ×¢¶¨ºÍºñ°® £¬Êýѧѧ¿ÆÒª×¥×¡»úÔµ £¬Ó­ÄѶøÉÏ £¬ÒÔÕâ´Îѧ¿Æ·¢Õ¹Õ½Êõ×êÑлáΪÆõ»ú £¬Íƶ¯Êýѧѧ¿Æ¸ßÖÊÁ¿·¢Õ¹¡£

20230423-11.png

Ëæºó £¬Êýѧ´ó¼Ò½²Ì³µÚÒ»½²¿ª½² £¬ÖÜÏòÓîԺʿÔÚJ103×÷ÁËÌâΪ¡°´ÓÉ̸ßÖ¤Ã÷¹´¹É¶¨Àí̸Æð¡±µÄÊýѧ´ó¼Ò½²Ì³µÚÒ»½²¡£ÖÜԺʿ´Ó»ªÂÞ¸ýÏÈÉúµÄÃûÑÔ¡°ÖлªÃñ×åÊÇÉÆÓÚÊýѧµÄÃñ×塱ÆðÍ· £¬Ö¸³öÖйú¹Å´úÔÚÊýѧÉÏ×ö³öÁ˼«Îª³ÁÒªµÄ¹±Ï× £¬²¢´Ó¹Å´úÊýѧ¡¢¼¸¶àô½Ç¶ÈµÈ¶à·½Î»ÂÛÊöÁËÖйú¹Å´úÊýѧ˼Ïë¡£´ÓÉ̸ßÕÛ¾ØË¼Ï붯ÊÖ £¬ËµÁËÈ»Öйú¹Å´úÊýѧ³éÏóÓë¾ßÌåÏà½áºÏµÄÌØµã¡£±¾´Î½²×ùÈÃÎÒÃÇ¿´µ½ÁËÖйú¹Å´úÊýѧԴԶÁ÷³¤ £¬ÔÚÃÏ×Ó¡¢Ä«×Ó¡¢Ü÷×Ó¡¢¹Ü×Ó¡¢º«·Ç×ÓµÈÖî×ÓÈËÎÄ˼ÏëÖÐÔ̺¬Êýѧ˼Ïë £¬¶ÔÖйúÎÄ»¯Ó°ÏìÉîÔ¶¡£Í¨¹ý½²×ù¼ÓÇ¿ÁËѧÉúµÄÎÄ»¯×Ô¸ºÓë°®¹úÇ黳 £¬Òý·¢ÁËѧÉúµÄ½ø½¨Öܵ½ £¬¶ÔÔì¾ÍѧÉúµÄ¿ÆÑ§ËØÑøÆðµ½ÁË»ý¼«×÷Óá£

20230423-12.png

4ÔÂ21ÈÕÔÚУ±¾²¿E408»áÒéÊÒ½øÐÐÊýѧ´ó¼Ò½²Ì³µÚ¶þ½² £¬Ô¼ÇëÕÅΰƽԺʿ×÷ÌâΪ¡°Two applications of eta-invariant¡± µÄѧÊõ»ã±¨¡£¾ÝÏàʶeta-²»±äÁ¿ÊÇÓɳÛÃûÊýѧ¼ÒAtiyah,PatodiºÍSingerÒýÈë £¬ÔÚ¼¸ºÎ £¬ÍØÆË £¬ÊýÂÛºÍÊýѧÎïÀíÖÐÆð׿«¶È³ÁÒªµÄ×÷Óá£ÕÅԺʿÔڻ㱨ÖÐÖØÒª½éÉÜÁËeta²»±äÁ¿µÄÁ½¸ö³ÁÒªÀûÓà £¬Ò»¸öÊÇRokhlon congruences £¬ÁíÒ»¸öÀûÓÃÊǽâ¾öBerard £¬BergeryºÍBesseµÄÒ»¸öÎÊÌâ¡£ÖÜÏòÓîԺʿ¡¢¸´µ©´óѧ¸µ¼ªÀû½ÌÊÚ¡¢ÄÏ¿ª´óѧ·ë»ÝÌνÌÊÚ¡¢ÖпƴóÂéÏ£ÄϽÌÊÚÒÔ¼°ÊýѧϵʦÉúÇãÌýÁËÕÅԺʿµÄ»ã±¨²¢·¢Õ¹ÁËÉî¿Ì»¥»»»áÉÌ¡£

20230423-13.png

Õâ´ÎÊýѧѧ¿Æ·¢Õ¹Õ½Êõ×êÑлáôßÊýѧ´ó¼Ò½²Ì³µÄ˳ÀûÕÙ¿ª £¬ÎªÐ±¦GGµÄÊýѧѧ¿Æ·¢Õ¹ºÍ½¨ÉèÌṩÁËÕ½ÊõÐÔ¡¢Áìµ¼ÐÔ½¨Òé £¬ÇãÌý½Ü³öÉùÒô £¬ÁìÂÔ´ó¼Ò·ç²É £¬Äý¾Û¹²Ê¶ £¬²úÉú¹²Ê¶ £¬Ðγɹ²ÕñºÏÁ¦ÖúÍÆÑ§¿Æ¸ßÖÊÁ¿·¢Õ¹¡£

¡¾ÍøÕ¾µØÍ¼¡¿