½üÈÕ£¬Ð±¦GG×ÊÁÏ»ùÒò×鹤³Ì×êÑÐÔº·ëÁèÑà½ÌÊÚ¿ÎÌâ×éºÍÁõéó½ÌÊÚ¿ÎÌâ×éºÏ×÷£¬ÔÚ¹ú¼Ê³ÛÃûѧÊõÆÚ¿¯¡¶NPJComputational Materials¡·Éϰ䷢ÌâΪ¡°Center-environment deep transfer machine learning across crystal structures: from spinel oxides to perovskite oxides¡±µÄ×êÑгɾ͡£×ÊÁÏ»ùÒòÔº2020¼¶²©Ê¿ÉúÀîÒ»º½ÎªµÚÒ»×÷Õߣ¬µÚ¶þ×÷ÕßÖìÈð½ÜÊÇǮΰ³¤Ñ§Ôº/×ÊÁÏ»ùÒòÔºÓëÃÀ¹úÎ÷±±´óѧ½áºÏÔì¾Í˫˶ʿÏîÄ¿ÖеÄÔÚ¼®ÔÚÃÀ˶ʿ£¬ÔÚ±¾¹¤×÷ÖÐÒ²×ö³ö³ÁÒª¹±Ï×£¬Ð±¦GGΪµÚÒ»ÊðÃûµ¥Ôª¡£
ͨ¹ýÍÆËã²½Öè·¢ÏÖÐÂ×ÊÁÏÄܹ»¼ò»¯³¢ÊԺϳÉǰµÄɸѡ¹ý³Ì£¬µ«Òò×ÊÁÏ×é·ÖºÍ½á¹¹µÄ¾Þ´óDZÔÚ×éºÏ£¬ÏµÍ³µØË÷ÇóÃæ¶Ô¾Þ´óÌôÕ½¡£ÓÈÆäµ±Ö¸±ê×ÊÁϵÄ×êÑÐÊý¾ÝÓÐÏÞʱÔòÃæ¶Ô¸ü´óµÄÄÑÌ⣬´Ëʱ´ÓÆäËû×ÊÁÏÒÑÖªµÄ´óÐÍÊý¾Ý¼¯ÖÐ×÷¿ç¾§Ìå½á¹¹µÄǨáã»úе½ø½¨£¬±ã³ÉΪ×ÊÁÏÉè¼ÆÖеijÁÒªÕ½ÊõÖ®Ò»¡£

General schematic diagram of DNN-CE models and the workflow of transfer learning method in this work.
¸Ã×êÑÐչʾÁËÒ»ÖÖ½áºÏ×ÔÖ÷Éè¼ÆµÄ¡°ÖÐÐÄ-»·¾³¡±£¨CE£©ÌصãÄ£ÐͺÍÉî¶ÈǨáã½ø½¨²½ÖèÀ´Ô¤²â¸ÆîÑ¿óÑõ»¯Îï²»±äÐԵĸßͨÁ¿É¸Ñ¡Õ½Êõ¡£ÀûÓÃ5329¸ö¼â¾§Ê¯Ñõ»¯ÎïµÄDFTÍÆËãÐγÉÄÜÊý¾ÝѵÁ·Ô´ÓòÄ£ÐÍ£¬ÔÙͨ¹ý855¸ö¸ÆîÑ¿óÑõ»¯Îï½á¹¹µÄÓ×Êý¾Ý¼¯Î¢µ÷Ä£ÐͲÎÊý£¬µÃµ½ÓµÓÐÓÅÁ¼Ç¨áãÐÔµÄÄ£ÐͲ¢Ô¤²â¸ÆîÑ¿óÑõ»¯Îï²»±äÐÔ¡£

Crystal structures and constituent elements of spinel oxides and perovskite oxides studied in this work.
ÀûÓÃ73ÖÖÔªËØÖû»¸ÆîÑ¿ó½á¹¹µÄÑôÀë×Ó£¬ÌìÉú5329¸ö¸ÆîÑ¿ó²¢Í¨¹ýǨáã½ø½¨Ô¤²âÆäÐγÉÄÜ¡£

Statistical distribution of the formation energy of perovskite structures predicted by machine learning and the screening process for stable perovskite structures.
½áºÏÔ¤²âµÄÐγÉÄÜÒÔ¼°Ô̺¬ÈÝÈÌÒò×Ó£¨0.7 < t ¡Ü 1.1£©ºÍ°ËÃæÌåÒò×Ó£¨0.45 < ¦Ì < 0.7£©µÄ½á¹¹Òò×ӳ߶ȣ¬Ô¤²âÁË1314ÖÖÈÈÁ¦Ñ§²»±äµÄ¸ÆîÑ¿óÑõ»¯ÎÆäÖÐ859ÖÖÉÐδÓÐÎļþ±¨Â·¸ÆîÑ¿ó½á¹¹Îª½øÒ»²½³¢ÊÔ×êÑÐÌṩÁ˳ÁÒªµÄÁìµ¼¡£
×ÊÁÏ»ùÒò¹¤³ÌµÄ¸ù»ùÀíÏëÊÇˢд«Í³µÄ¡°ÊÔ´í·¨¡±×ÊÁÏ×êÑÐģʽ£¬·¢Õ¹¡°ÀíÐÔÉè¼Æ-¸ßͨÁ¿³¢ÊÔ-´óÊý¾Ý¼¼Êõ¡±Éî¶ÈÈںϡ¢Ðͬ´´ÐµÄÐÂÐÍ×ÊÁÏÑз¢Ä£Ê½£¬ÏÔÖøÌá¸ßÐÂ×ÊÁϵÄÑз¢Ð§ÄÜ£¬ÍƽøÐÂ×ÊÁϵÄÀûÓá£
ÉÏÊö¹¤×÷µÃµ½Á˹ú¶ÈÌìÈ»¿ÆÑ§»ù½ð¡¢Sino-German Mobility Program¡¢ÉϺ£ÊÐÆôÃ÷ÐÇÈ˲ŴòËã¡¢ÉϺ£ÊпÆÎ¯³Áµã»ù´¡×êÑдòËã¡¢Ö®½³¢ÊÔÊÒ³Áµã×êÑÐÏîÄ¿µÈÏîÖ÷ÕÅÔÞÖú¡£
ÎÄÕÂÁ´½Ó£ºhttps://doi.org/10.1038/s41524-023-01068-7