½üÈÕ£¬ÃÀ¹úÊýѧѧ»áÆÚ¿¯¡¶Mathematics of Computation¡·ÔÚÏß°ä·¢ÁËÀíѧԺÊýѧϵÍõÇäÎĽÌÊÚ£¨Î¨Ò»Í¨Ñ¶×÷Õߣ©ºÍº£ÄÏ´óѧÀîÌβ©Ê¿µÄ×îÐÂ×êÑгɾ͡°QQMR: A structure preserving quaternion quasi-minimal residual method¡±¡£¡¶Mathematics of Computation¡·Êǹú¼ÊÉÏÍÆËãÊýѧÁìÓòµÄ¶¥¼¶ÆÚ¿¯£¬ÓÉÃÀ¹úÊýѧѧ»á³ö°æ£¬×¨Ò»ÓÚÊýÖµ·ÖÎö¡¢ÍÆËã²½ÖèºÍÊýѧÀûÓõÈÁìÓòµÄ¸ßÖÊÁ¿×êÑС£¸ÃÆÚ¿¯ÔÚѧÊõ½çÏíÓкܸߵÄÃûÓþ£¬°ä·¢µÄÎÄÕÂͨ³£ÓµÓгÁÒªµÄÀíÂÛ»òÀûÓüÛÖµ¡£ÔÚÖйúÊýѧ»áÍÆ¼öµÄÊýѧÆÚ¿¯·ÖÀà¼ò±íÖб»ÁÐΪT1À࿯ÎÔÚÖпÆÔº·ÖÇøÖÐÒ²ÊÇ1ÇøTopÆÚ¿¯¡£

ÂÛÎÄÖØÒª×êÑÐÁ˼±¾çÇó½â´óÐÍÏ¡ÉÙËÄÔªÊýÏßÐÔ·½³Ì×éµÄ±£½á¹¹ËÄÔªÊýÄ⼫Óײв£¨QQMR£©¡£ ´ËËã·¨ÊÇÀîÌβ©Ê¿ºÍÍõÇäÎĽÌÊڼ̱£½á¹¹ËÄÔªÊýË«¹²éîÌݶȷ¨£¨SIAM Journal on Matrix Analysis and Applications, 45: 306-326, 2024£©Ö®ºóµÄÓÖÒ»¸ßˮƽ³É¾Í¡£ËÄÔªÊýË«¹²éîÌݶȷ¨¶ÔÉáÈëÎó²î½ÏΪÃô¸Ð£¬³ö¸ñÊÇÔÚÇó½âijЩ´óÐͲ¡Ì¬ËÄÔªÊýÏßÐÔ·½³Ì×éʱ²Ð²î·¶Êý»á¾çÁÒÕðµ´£¬µ¼Ö´ËËã·¨ÍÆËãЧÄܽµµÍ¡£ÔÚʵÊýÓòÉÏ£¬QMRËã·¨ÓµÓÐÄ⼫Ó×»¯²Ð²îÐÔÖÊ£¬¿ÉÓÐЧԤ·À²Ð²î·¶ÊýÕðµ´µÄÎÊÌ⣬¶øñîºÏÁ½ÏîµÝÍÆÌåʽµÄË«¹²éî¹æ·¶Õý½»»¯¹ý³ÌÊdzÉÁ¢QMRËã·¨µÄ»ùʯ¡£µ«ÒòËÄÔªÊý³Ë·¨µÄ·Ç»¥»»ÐÔ£¬µ¼ÖÂÔÚËÄÔªÊý´úÊýÉϹ¹½¨¸Ã¹ý³ÌÓµÓм«´óµÄÄѶȡ£±¾ÎÄÔÚËÄÔªÊý´úÊýÉϳõ´Î³ÉÁ¢ÁË»ùÓÚñîºÏÁ½ÏîµÝÍÆÌåʽµÄË«¹²éî¹æ·¶Õý½»»¯¹ý³Ì¡£ÒÔ´ËΪÀíÂÛ»ù´¡£¬³ÉÁ¢Á˱£½á¹¹ËÄÔªÊýÄ⼫Óײв¼°ÆäÊÕÁ²ÐÔ·ÖÎö¡£Îª¼Ó¿ìQQMRËã·¨µÄÊÕÁ²¿ìÂÊ£¬ÂÛÎÄÓÖÔÚËÄÔªÊý´úÊýÉϹ¹½¨ÁËȫеIJ»ÆëÈ«LU·Ö»¯×÷ΪԤ´¦ÖÃ×Ó£¬¸ø³öÁËÔ¤´¦ÖÃQQMRËã·¨¡£
ÕâЩËã·¨³ä·ÖÀûÓÃʵ°µÊ¾µÄJRS-¶Ô³ÆÐÔ£¬ÔÚµü´ú¹ý³ÌÖнöÐèÍÆËã³öËÄÔªÊý£¨ËÄÔªÊýÏòÁ¿£©Êµ°µÊ¾µÄµÚÒ»Áзֿ飬Ïà½ÏÓÚÖ±½ÓÀûÓÃQMRËã·¨Çó½âÔ·½³Ì×éµÄʵ°µÊ¾µÈ¼Û¾ØÕ󷽳̣¬¿É½Ú¼óËÄ·ÖÖ®ÈýµÄ´æ´¢Á¿ºÍÍÆËãÁ¿¡£Í¬Ê±£¬´ËËã·¨¿ÉÓÐЧԤ·À²Ð²î·¶ÊýµÄ¾çÁÒÕðµ´£¬ÔÚ´¦ÖòÊɫͼÏñÈ¥ÍÌͺÍLorenzÎüÒý×ÓÎÊÌâÉÏ£¬½ÏQBiCGËã·¨Ô½·¢²»±ä¸ßЧ¡£´ËÏî×êÑгɾͽ«ÍƽøËÄÔªÊý´úÊýÉϸ߻úÄܱ£½á¹¹ Krylov ×Ó¿Õ¼äËã·¨µÄ½øÒ»²½·¢Õ¹£¬ÓµÓгÁÒªµÄÀíÂÛÒâ˼ºÍÏÖʵÀûÓüÛÖµ¡£
ÎÄÕÂÁ´½Ó£ºhttps://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2025-04074-2/?active=current