ÀûÓÃRiemann-Hilbert²½Öè·ÖÎö¡°ºÃµÄ¡±Boussinesq·½³ÌµÄ³¤¹¦·ò½¥½üÐÐΪ

2022.10.20

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2022Äê10ÔÂ25ÈÕ 10:00

µØÖ·£º ÌÚѶ»áÒé

»ã±¨±êÌâ (Title)£ºRiemann-Hilbert approach to the long-time asymptotics of the ¡°good¡± Boussinesq equation(ÀûÓÃRiemann-Hilbert²½Öè·ÖÎö¡°ºÃµÄ¡±Boussinesq·½³ÌµÄ³¤¹¦·ò½¥½üÐÐΪ)

»ã±¨ÈË (Speaker)£ºÍõµÆÉ½ ½ÌÊÚ£¨±±¾©Ê¦·¶´óѧ£©

»ã±¨¹¦·ò (Time)£º2022Äê10ÔÂ25ÈÕ(Öܶþ) 10£º00

»ã±¨µØÖ· (Place)£ºÌÚѶ»áÒ飨»áÒéºÅ£º118 563 369£©

Ô¼ÇëÈË(Inviter)£ºÏÄÌú³É ½ÌÊÚ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºWe report our recent work on the long-time asymptotics of the initial-value problem for the ¡°good¡± Boussinesq equation on the line. The inverse scattering transform formalism implies that the solution of the ¡°good¡± Boussinesq equation can be expressed in terms of the solution of a three order-matrix Riemann-Hilbert problem. The long-time asymptotic behaviors of the solution are established by performing a nonlinear steepest descent analysis of this Riemann-Hilbert problem.

¡¾ÍøÕ¾µØÍ¼¡¿