ÉϺ£ÖÎÀíÂÛ̳µÚ488ÆÚ
±êÌ⣺Dissolving Constraints for Riemannian Optimization£¨ÀèÂüÓÅ»¯ÎÊÌâµÄÔ¼Êø½â²½Ö裩
Ñݽ²ÈË£ºÁõì§£¬Öйú¿ÆÑ§ÔºÊýѧÓëϵͳ¿ÆÑ§×êÑÐÔº¡°·ë¿µÊ×ϯ×êÑÐÔ±¡±
Ö÷³ÖÈË£ºÖìÏ£µÂ£¬Ð±¦GGÖÎÀíѧԺ¸±½ÌÊÚ
¹¦·ò£º2023Äê3ÔÂ17ÈÕ£¨ÖÜÎ壩£¬ÏÂÎç16:30
µØÖ·£ºÐ±¦GGУ±¾²¿¶«ÇøÖÎÀíѧԺ420»áÒéÊÒ
Ö÷°ìµ¥Ôª£ºÐ±¦GGÖÎÀíѧԺ¡¢Ð±¦GGÖÎÀíѧԺÇàÀÏ´óʦÁªÒê»á
Ñݽ²È˼ò½é£º
Áõì§£¬Öйú¿ÆÑ§ÔºÊýѧÓëϵͳ¿ÆÑ§×êÑÐÔº¡°·ë¿µÊ×ϯ×êÑÐÔ±¡±£¬²©Ê¿Éúµ¼Ê¦£¬ÍÆËãÊýѧÓë¿ÆÑ§¹¤³ÌÍÆËã×êÑÐËù¸±Ëù³¤¡£2004Äê±¾¿Æ±ÏÒµÓÚ±±¾©´óѧÊýѧ¿ÆÑ§Ñ§Ôº£¬2009Äê»ñµÃÖйú¿ÆÑ§ÔºÊýѧÓëϵͳ¿ÆÑ§×êÑеò©Ê¿Ñ§Î»£¬ÔøÔڵ¹úZuse Institute Berlin¡¢ÃÀ¹úRice´óѧ¡¢ÃÀ¹úŦԼ´óѧCourant×êÑÐËùµÈ¿ÆÑÐÔºËù³Ö¾Ã½Ó¼û¡£ÏÖÈÎÖйúÔ˳ïѧ»á³£ÎñÀíÊ£¬Öйú¹¤ÒµÓëÀûÓÃÊýѧ»á¸±ÃØÊ鳤¡£
ÈÙ»ñ2016Äê¹ú¶ÈÓÅÁ¼ÇàÄê¿ÆÑ§»ù½ð£¬2021Äê¹ú¶È׿ԽÇàÄê¿ÆÑ§»ù½ð¡£
ÈÙ»ñ2016ÄêÖйúÔ˳ïѧ»áÇàÄê¿Æ¼¼½±£¬2020ÄêÖйú¹¤ÒµÓëÀûÓÃÊýѧѧ»áÀûÓÃÊýѧÇàÄê¿Æ¼¼½±¡£
ÖØÒª×êÑз½ÏòÔ̺¬Á÷ÐÎÓÅ»¯¡¢É¢²¼Ê½ÓÅ»¯¼°ÆäÔÚ×ÊÁÏÍÆËã¡¢´óÊý¾Ý·ÖÎöºÍ»úе½ø½¨µÈÁìÓòµÄÀûÓᣵ£ÈÎMathematical Programming Computation¡¢Journal of Computational Mathematics¡¢Journal of Industrial and Management OptimizationµÈ¹úÄÚ±íÆÚ¿¯±àί¡£
Ñݽ²ÄÚÈݼò½é£º
In this talk, we consider optimization problems over closed embedded submanifolds of Euclidean space, which are defined by the equality constraints c(x)=0. We propose a class of constraint dissolving approaches for these Riemannian optimization problems. Its main idea is to transfer the original manifold constrained optimization into an unconstrained optimization problem which minimizes a constraint dissolving function abbreviated as CDF. Different from existing exact penalty functions, the exact gradient and Hessian of CDF are easy to compute. We study the theoretical properties of CDF and prove that the original problem and CDF share the same first-order and second-order stationary points, local minimizers, and ?ojasiewicz exponents in a neighborhood of the feasible region. Remarkably, the convergence properties of our proposed constraint dissolving approaches can be directly inherited from the existing rich results in unconstrained optimization. Therefore, the proposed constraint dissolving approaches build up short cuts from unconstrained optimization to Riemannian optimization. Several illustrative examples further demonstrate the potential of our proposed constraint dissolving approaches.
Ó½Ó¿í´óʦÉú²ÎÓ룡