Ò»¸ö·¢É¢µÄÀ­ÂíŬ½ðÀàÐͳ¬Í¬ÓàʽµÄÐÂÍÆ¹ã

2023.06.16

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºÒ»¸ö·¢É¢µÄÀ­ÂíŬ½ðÀàÐͳ¬Í¬ÓàʽµÄÐÂÍÆ¹ã

»ã±¨ÈË (Speaker)£º ¹ù¾üΰ ½ÌÊÚ£¨»´Òõʦ·¶Ñ§Ôº£©

»ã±¨¹¦·ò (Time)£º2023Äê06ÔÂ19ÈÕ(ÖÜÒ») 11:00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿E421

Ô¼ÇëÈË(Inviter)£º³Âµ©µ©

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºWe give a new extension of a ``divergent" Ramanujan-type supercongruence of Guillera and Zudilin by establishing a $q$-analogue of this result. Our proof makes use of the ``creative microscoping" method, which was introduced by the second author and Zudilin in 2019. We also present a similar extension of the (L.2) supercongruence of Van Hamme in the modulus $p^2$ case.

¡¾ÍøÕ¾µØÍ¼¡¿