Ò»Àࣨ·ºº¯£©·¢Õ¹·½³ÌµÄÅж¨ÓëÔ¼¼ò

2023.08.03

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºÒ»Àࣨ·ºº¯£©·¢Õ¹·½³ÌµÄÅж¨ÓëÔ¼¼ò

»ã±¨ÈË (Speaker)£ºÑîй⠽ÌÊÚ (ºÓÄÏʦ·¶´óѧ)

»ã±¨¹¦·ò (Time)£º2023Äê8ÔÂ3ÈÕ£¨ÖÜËÄ£© 9:00-11:00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿ F309

Ô¼ÇëÈË(Inviter)£ºÖìÅå³É ½ÌÊÚ

Ö÷°ì²¿ÃÅ£ºÀíѧԺ Êýѧϵ

»ã±¨ÌáÒª£º The number of determining modes for a class of (functional) evolutionary equations is estimated by using an appropriate set of points in the configuration space by virtue of the generalized Grashof number via (a new retarded) averaging Gronwall inequality. Moreover, the 2D Navier-Stokes equations and reactive-diffusion equations and their functional systems can be regarded as examples for this determination.

¡¾ÍøÕ¾µØÍ¼¡¿