ÎÞµç×èÂʵIJ»³ÉѹËõ´ÅÁ÷Ì壺½á¹¹ÓëÕýÔòÐÔ

2023.10.09

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºIncompressible MHD Without Resistivity: structure and regularity£¨ÎÞµç×èÂʵIJ»³ÉѹËõ´ÅÁ÷Ì壺½á¹¹ÓëÕýÔòÐÔ£©

»ã±¨ÈË (Speaker)£ºÅËÈÙ»ª ½ÌÊÚ£¨ÃÀ¹ú×ôÖÎÑÇÀí¹¤Ñ§Ôº£©

»ã±¨¹¦·ò (Time)£º2023Äê10ÔÂ10ÈÕ(Öܶþ) 8:00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿F309¡¢ÌÚѶ»áÒ飺740-996-867

Ô¼ÇëÈË(Inviter)£ºÁõ¼ûÀñ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºWe study the global existence of classical solutions to the incompressible viscous MHD system without magnetic diffusion in 2D and 3D. The lack of resistivity or magnetic diffusion poses a major challenge to a global regularity theory even for small smooth initial data. However, the interesting nonlinear structure of the system not only leads to some significant challenges, but some interesting stabilization properties, that leads to the possibility of the theory of global existence of classical and/or strong solutions. This talk is based on joint works with Yi Zhou, Yi Zhu, Shijin Ding, Xiaoying Zeng, and Jingchi Huang.

¡¾ÍøÕ¾µØÍ¼¡¿