ÉϺ£ÖÎÀíÂÛ̳µÚ150ÆÚ£¨Ô¬ÏþÃ÷½ÌÊÚ£¬Ïã¸Û½þ»á´óѧ£©
Ìâ Ä¿£ºAccuracy vs Implementability in Algorithmic Design—An Example of Operator Splitting Methods for Convex OptimizationËã·¨Éè¼ÆÖÐÈôºÎ˼¿¼¾«¶ÈºÍ¿É²Ù×÷ÐÔ—ÒÔ͹ÓÅ»¯ÎÊÌâµÄËã×Ó¸îÁѲ½ÖèΪÀý
ÑÝ ½² ÈË£ºÔ¬ÏþÃ÷ Ïã¸Û½þ»á´óѧÊýѧϵ½ÌÊÚ
Ö÷ ³Ö ÈË£ºÁÖ¹ó»ª Ð±¦GGÖÎÀíѧԺ½ÌÊÚ¡¢ÖÎÀí¿ÆÑ§Ó빤³ÌϵÖ÷ÈÎ
ʱ ¼ä£º2015Äê10ÔÂ23ÈÕ£¨ÖÜÎ壩13:30-14:30
µØ µã£ºÐ±¦GGУ±¾²¿¶«ÇøÖÎÀíѧԺ420ÊÒ
Ö÷°ìµ¥Ôª£ºÐ±¦GGÖÎÀíѧԺ¡¢Ð±¦GGÖÎÀíѧԺÇàÀÏ´óʦÁªÒê»á
Ñݽ²ÄÚÈݼò½é£º
Accuracy and implementability are two common yet usually conflicted objectives for developing an efficient algorithm. In this talk, I will focus on the context of convex optimization models with separable structures to show how to make a trade-off between these two objectives for some operator splitting methods originated from the PDE literature (e.g., the Douglas-Rachford and Peaceman-Rachford schemes) The resulting algorithms could be applicable to large-scale dataset; and their efficiency will be demonstrated by some specific applications in statistical learning and image processing (e.g., the LASSO and TV-deblurring models). Some theoretical results such as the convergence rates of these algorithms will also be mentioned briefly.
Ñݽ²È˼ò½é£º
Ô¬ÏþÃ÷£¬Ïã¸Û½þ»á´óѧÊýѧϵ½ÌÊÚ£¬Í¼Ïñ¿ÆÑ§×êÑÐÖÐÐĸ±Ö÷ÈΣ¬Ïã¸ÛÊýѧ»áÀíÊ»á³ÉÔ±£¬2013ÄêÏã¸Û½þ»á´óѧ׿ԽÇàÄê×êÑÐԱУ³¤½±»ñµÃÕߣ¬ÔøÈÎÖ°ÉϺ£½»Í¨´óѧ¡¢¼ÓÄôóά¶àÀûÑÇ´óѧ¡¢Ó¢Êô¸çÂ×±ÈÑÇ´óѧOkanagan·ÖУ£¬2006Äê¼ÓÄôóPIMS½±Ñ§½ð»ñµÃÕß¡£×êÑÐÁìÓòΪÊýÖµ×îÓÅ»¯Ëã·¨£¬Ä¿Ç°ÒѰ䷢ѧÊõÂÛÎÄ90ÓàÆª£¬ÆäÖÐÔ̺¬Mathematical Programming¡¢SIAM Journal on OptimizationµÈ¶¥¼¶ÆÚ¿¯ÂÛÎÄ20ÓàÆª¡£
Ó½Ó¿í´óʦÉú²ÎÓ룡