´óÊý¾ÝËã·¨¼°ÆäÒ½ÁÆÀûÓ᪡ªÍÆËã»úѧԺ

2014.06.04

Ͷ¸å£ºÁõ»ª²¿ÃÅ£ºÍÆËã»ú¹¤³ÌÓë¿ÆÑ§Ñ§Ôºä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2014Äê06ÔÂ09ÈÕ 09:30

µØÖ·£º У±¾²¿¶«ÇøÍÆËã»úÂ¥1001»áÒéÊÒ

±¨ ¸æ ÈË: ³ÂÒ»ê¿ ¸±½ÌÊÚ ¡¾ÃÀ¹ú»ªÊ¢¶Ù´óÑ§ÍÆËã»úϵ¡¿
»ã±¨¹¦·ò: 2014Äê6ÔÂ9ÈÕ£¨ÖÜÒ»£©9:30¡«11:00
»ã±¨µØÖ·: У±¾²¿¶«ÇøÍÆËã»úÂ¥1001»áÒéÊÒ
Ñû Çë ÈË£ºÕÅÎä ½ÌÊÚ
»ã±¨ÌáÒª£ºIn the era of big data, we need novel algorithms on top of the supporting platform. In this talk, I will first discuss some key aspects of big data algorithms in general. Then, I will talk about our recent medical big data project as a case study. Early detection of clinical deterioration is essential to improving clinical outcome. In this project, we develop new algorithms for clinical early warning by mining massive clinical records in hospital databases. The research focuses on the large population of patients in the general hospital wards, who are not in the intensive care units and suffer from infrequent monitoring. I will discuss the challenges this big data application poses to traditional machine learning and data mining algorithms, our recent progress, and the lessons we learnt. Promising results on real-life clinical trials at the Barnes-Jewish Hospital (the eighth largest hospital in the United States) will be discussed.
»ã±¨È˼ò½é£º³Âһ꿲©Ê¿£¬Öйú¿Æ¼¼´óѧÉÙÄê°à±¾¿Æ±ÏÒµ£¬ÃÀ¹úÒÁÀûŵ´óѧÏãéÄ·ÖУ»ñÍÆËã»ú¿ÆÑ§²©Ê¿Ñ§Î»£¬µ¼Ê¦Îª»ªÔÆÉú½ÌÊÚ ¡£ÏÖÈÎÃÀ¹ú»ªÊ¢¶Ù´óÑ§ÍÆËã»úϵ¸±½ÌÊÚ£¬²©Ê¿Éúµ¼Ê¦ ¡£×êÑÐÁìÓòΪÊý¾ÝÍÚ¾ò¡¢»úе½ø½¨¡¢ÓÅ»¯Ëã·¨¡¢¹æ»®µ÷¶È¡¢ÈËΪÖÇÄÜ¡¢²©ÞÄÂÛºÍÔÆÍÆËãµÈ ¡£ÔÚAIJ, JAIR, TKDE, TKDD, TIST, TPDSµÈ¹ú¼ÊÒ»Á÷ÆÚ¿¯ºÍVLDB, AAAI, KDD, IJCAI, ICML, RTSSµÈ¹ú¼Ê¶¥¼¶»áÒéºÍÉϰ䷢ÂÛÎÄ100ÓàÆª ¡£ÈÎÊý¾ÝÍÚ¾òºÍÈËΪÖÇÄÜÁìÓòµÄÒ»Á÷ÆÚ¿¯JAIR, TKDE, TISTµÄ±àί£¬ºÍICML, KDD, AAAI, IJCAI, ICDM, SDMµÈÒ»Á÷¹ú¼Ê»áÒéµÄ·¨Ê½Î¯Ô±»áίԱ ¡£Æä×êÑÐÂ½Ðø»ñµÃÃÀ¹ú¹ú¶È¿ÆÑ§»ù½ðί£¬ÃÀ¹úÄÜÔ´²¿£¬ÃÀ¹ú¹ú¶ÈÎÀÉú¾Ö£¬ÃÀ¹úÄÜÔ´×êÑпÆÑ§ÍÆËãÖÐÐÄ£¬ÃÀ¹ú΢Èí¹«Ë¾£¬ÃÀ¹ú˹¡¿­ÌØÁÕ°©Ö¢ÖÐÐÄ£¬ÃÀ¹ú°Í¶÷ÓÌ̫ҽԺ»ù½ðµÄÔÞÖú ¡£Ôø»ñAAAI(2010), ICTAI(2005), ICMLC(2004)µÈ¹ú¼Ê»áÒéµÄ×î¼ÑÂÛÎĽ± ¡£Æä¿ª´´ÐÔµÄ×êÑй¤×÷»ñµÃÁËÃÀ¹ú΢ÈíÇàÄê½ÌÊÚ½±(2007)ºÍÃÀ¹úÄÜÔ´²¿×¿Ô½ÇàÄê½ÌÊÚ½±£¨2006) ¡£ÏÖΪÃÀ¹ú¹ú¶È¿ÆÑ§»ù½ðί£¬Ïã¸Û×êÑлù½ðί£¬°ÂµØÀû¹ú¶È¿ÆÑ§»ù½ðί£¬ÈðÊ¿¹ú¶È¿ÆÑ§»ù½ðί£¬Öйú¿Æ¼¼²¿¿Æ¼¼ÆÀ¹ÀÖÐÐĵįÀÉóίԱ ¡£Öйú¿Æ¼¼´óѧËù³Ðµ£µÄ½ÌÓý²¿111ÒýÖÇ´òËãר¼Ò×é°Ëλר¼Ò³ÉÔ±Ö®Ò»£¬ÖйúÍÆËã»úѧ»á´óÊý¾Ýר¼ÒίԱ»áÊ×½ìίԱ֮һ ¡£
¡¾ÍøÕ¾µØÍ¼¡¿