»ã±¨±êÌâ (Title)£ºNoncommutative logarithmic Sobolev inequalities
ÖÐÎıêÌ⣺·Ç»¥»»µÄ¶ÔÊýSobolev²»µÈʽ
»ã±¨ÈË (Speaker)£º½¹Ó ½ÌÊÚ£¨ÖÐÄÏ´óѧ£©
»ã±¨¹¦·ò (Time)£º2024Äê4ÔÂ10ÈÕ(ÖÜÈý) 10:00
»ã±¨µØÖ· (Place)£ºÌÚѶ»áÒ飨514-885-492£©
Ô¼ÇëÈË(Inviter)£ºÏ¯¶«ÃË¡¢Àî½ú¡¢Õŵ¿¡¢Îâ¼ÓÓÂ
Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ
»ã±¨ÌáÒª£ºWe show that the logarithmic Sobolev inequality holds for an arbitrary hypercontractive semigroup acting on a noncommutative probability space. Particularly, we can recover the p-logarithmic Sobolev inequality whenever the Riesz transform is bounded. Our inequality applies to numerous concrete cases, including Poisson semigroups for free groups, the Ornstein-Uhlenbeck semigroup for mixed Q-gaussian von Neumann algebras, the free product for Ornstein-Uhlenbeck semigroups etc. This provides a unified abstract approach to logarithmic Sobolev inequalities in noncommutative setting.