GPU¼Ó¿ìµÄÉúÎï·Ö×Ó·ÂÕÕ

2024.07.08

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºGPU-Accelerated Biomolecular Simulations£¨GPU¼Ó¿ìµÄÉúÎï·Ö×Ó·ÂÕÕ£©

»ã±¨ÈË (Speaker)£ºProf. Huan-Xiang Zhou, University of Illinois Chicago, USA£¨ÖÜ»ÀÏé½ÌÊÚ£¬ÃÀ¹úÒÁÀûŵÒÁ´óѧ֥¼Ó¸ç·ÖУ£©

»ã±¨¹¦·ò (Time)£º2024Äê7ÔÂ11ÈÕ(ÖÜËÄ) 9:30

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿ E106

Ô¼ÇëÈË (Inviter)£º¹ù´Ï ¸±½ÌÊÚ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÎïÀíϵ

ÌáÒª (Abstract)£º

Intrinsically disordered proteins (IDPs) account for a significant fraction of any proteome and are central to numerous cellular functions. Yet how sequences of IDPs code for their conformational ensembles, conformational dynamics, and ultimately, functions is poorly understood. I will report our advances from GPU-accelerated molecular dynamics simulations. Three topics will be covered. (I) IDPs in solution. Results include force field selection [1], AI-based conformational mining [2], and characterization and prediction of sequence-dependent backbone dynamics [3, 4]. (II) IDP-membrane association. Results include characterization of fuzzy membrane association [5] and prediction of residue-specific membrane association propensities [6]. (III) Liquid-liquid phase separation. Results include calculations of thermodynamic and dynamic properties of biomolecular condensates [7, 8].

1. A. Hicks, C. A. Escobar, T. A. Cross, and H.-X. Zhou (2020). Biomolecules 10, 946

2. A. Gupta, S. Dey, A. Hicks, and H.-X. Zhou (2022). Commun. Biol. 5, 610

3. S. Dey, M. MacAinsh, and H.-X. Zhou (2022). J. Chem. Theory Comput. 18, 6310-6323

4. S. Qin and H.-X. Zhou (2023). eLife 12, RP88953

5. A. Hicks, C. A. Escobar, T. A. Cross, and H.-X. Zhou (2021). JACS Au 1, 66-78

6. S. Qin, A. Hicks, S. Dey, R. Prasad, H.-X. Zhou (2022). Membranes 12, 773

7. K. Mazarakos, R. Prasad, and H.-X. Zhou (2022). Front. Mol. Biosci. 9, 1021939

8. D. Kota, R. Prasad, and H.-X. Zhou (2024). J. Am. Chem. Soc. 146, 1326-1336

¡¾ÍøÕ¾µØÍ¼¡¿