Vlasov-Maxwell·½³ÌµÄ±£½á¹¹Æ×²½ÖèºÍÆ×Ôª·¨

2024.09.05

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºStructure-preserving spectral and spectral-element method for Vlasov-Maxwell equations (Vlasov-Maxwell·½³ÌµÄ±£½á¹¹Æ×²½ÖèºÍÆ×Ôª·¨)

»ã±¨ÈË (Speaker)£ºÑîÖ¾¹ú ¸±½ÌÊÚ£¨ÉϺ£½»Í¨´óѧ£©

»ã±¨¹¦·ò (Time)£º2024Äê9ÔÂ6ÈÕ(ÖÜÎå) 10£º00-12£º00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303

Ô¼ÇëÈË(Inviter)£º²ÌÃô¡¢ÀƷ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºIn this talk, we present structure-preserving spectral and spectral element methods for Vlasov-Maxwell (VM) equations. Two key ingredients, i.e. exact de Rham complexes and their commuting diagram, and the derivative property of the generalized Jacobi polynomials are essential for deriving the divergence-free spectral element basis and obtaining fast solution algorithms. Besides, asymptotic-preserving time discretization schemes are proposed for VM equations in the quasi-neutral regime. Ample numerical examples illustrate both the accuracy of the divergence-free basis functions and the efficiency of the proposed schemes.

¡¾ÍøÕ¾µØÍ¼¡¿