¹þ´ú¿Õ¼äÉϵÒÀû¿ËÀ×¼¶ÊýµÄÃæ»ýËã×Ó

2025.04.07

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºArea operators on Hardy spaces of Dirichlet series£¨¹þ´ú¿Õ¼äÉϵÒÀû¿ËÀ×¼¶ÊýµÄÃæ»ýËã×Ó£©

»ã±¨ÈË (Speaker)£ºÍõï·¢ ½ÌÊÚ£¨Î人´óѧ£©

»ã±¨¹¦·ò (Time)£º2025Äê4ÔÂ1ÈÕ(Öܶþ) 10:00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303

Ô¼ÇëÈË(Inviter)£ºÏ¯¶«ÃË¡¢Àî½ú¡¢Îâ¼ÓÓÂ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºIn this talk, we introduce area operators $\mathbb {A}_{¦Ì,l} \C_0$, then for 0<p<¡Þ, the area operator $\mathbb{A}_{¦Ì,l}$ is bounded from the Hardy space $\mathscr{H}^p_0$ of Dirichlet series vanishing at +¡Þ to some $L^p$-space. Moreover, if ¦Ì is a Carleson measure for the conformally invariant Hardy space $H^p_{i}(C_0)$, then $\mathbb{A}_{¦Ì,l}$ is bounded on the Hardy space $\mathscr{H}^p$ of Dirichlet series. We also show an application of our method to Volterra operators.

¡¾ÍøÕ¾µØÍ¼¡¿