»ã±¨±êÌâ (Title)£ºArea operators on Hardy spaces of Dirichlet series£¨¹þ´ú¿Õ¼äÉϵÒÀû¿ËÀ×¼¶ÊýµÄÃæ»ýËã×Ó£©
»ã±¨ÈË (Speaker)£ºÍõï·¢ ½ÌÊÚ£¨Î人´óѧ£©
»ã±¨¹¦·ò (Time)£º2025Äê4ÔÂ1ÈÕ(Öܶþ) 10:00
»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303
Ô¼ÇëÈË(Inviter)£ºÏ¯¶«ÃË¡¢Àî½ú¡¢Îâ¼ÓÓÂ
Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ
»ã±¨ÌáÒª£ºIn this talk, we introduce area operators $\mathbb {A}_{¦Ì,l} \C_0$, then for 0<p<¡Þ, the area operator $\mathbb{A}_{¦Ì,l}$ is bounded from the Hardy space $\mathscr{H}^p_0$ of Dirichlet series vanishing at +¡Þ to some $L^p$-space. Moreover, if ¦Ì is a Carleson measure for the conformally invariant Hardy space $H^p_{i}(C_0)$, then $\mathbb{A}_{¦Ì,l}$ is bounded on the Hardy space $\mathscr{H}^p$ of Dirichlet series. We also show an application of our method to Volterra operators.