ÓëÕý¶¨¾ØÕóÓйصÄÌØÊâ¾ØÕóµÄÐÂÐÔÖÊ

2025.04.25

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºNew properties of a special matrix related to positive-definite matrices£¨ÓëÕý¶¨¾ØÕóÓйصÄÌØÊâ¾ØÕóµÄÐÂÐÔÖÊ£©

»ã±¨ÈË (Speaker)£º »ÆÉÙÎä ¸±½ÌÊÚ£¨ÆÎÌïѧԺ£©

»ã±¨¹¦·ò (Time)£º2025Äê4ÔÂ25ÈÕ (ÖÜÎå) 15£º30

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303

Ô¼ÇëÈË(Inviter)£ºÍõÇäÎÄ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºLet $H$ be a $2n\times 2n$ real symmetric positive-definite matrix. Suppose that $H\circ H=(H_{ij})_{2n\times 2n}$ is a partitioned matrix, in which $\circ$ represents the Hadamard product and the block $H_{ij}$ has order $n\times n$, $1\leq i,j \leq 2$. Several new properties on the matrix $\widetilde{H}$ are derived including inequalities that involve the symplectic eigenvalues and the usual eigenvalues, where $2\widetilde{H}=H_{11}+H_{22}+H_{12}+H_{21}$.

¡¾ÍøÕ¾µØÍ¼¡¿