»ã±¨±êÌâ (Title)£ºÕý¹æÆëÐÔ·Ò˹Àտռ䣨Normal Homogeneous Finsler Spaces£©
»ã±¨ÈË (Speaker)£º µËÉÙÇ¿ ½ÌÊÚ£¨ÄÏ¿ª´óѧ£©
»ã±¨¹¦·ò (Time)£º2025Äê5ÔÂ15ÈÕ(ÖÜËÄ) 10:00-11:00
»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303
Ô¼ÇëÈË(Inviter)£ºÕźìÁ« ½ÌÊÚ
Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ
»ã±¨ÌáÒª£ºWe present our recent results on normal homogeneous Finsler spaces. After clarifying the notion of a normal homogeneous Finsler space, we establish a technique to reduce the classification of normal homogeneous Finsler spaces of positive flag curvature to an algebraic problem. We show that a coset space $G/H$ admits a positively curved normal homogeneous Finsler metric if and only if it admits a positively curved normal homogeneous Riemannian metric. We also give a complete description of the coset spaces admitting non-Riemannian positively curved normal homogeneous Finsler spaces. This talk is based on joint work with Ming Xu (Xu-Deng, Normal Homogeneous Finsler Spaces, Transformation Groups, 22 (2017), 1143-1183).