»ã±¨±êÌâ (Title)£º¹ØÓÚ¹ãÒåÖÈΪ3µÄNahmºÍµÄMizuno²Â²â
»ã±¨ÈË (Speaker)£ºÍõ²©Ñ§£¨Î人´óѧ£©
»ã±¨¹¦·ò£¨Time£©£º2025.6.8£¨ÖÜÈÕ£©10£º30
»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303
Ô¼ÇëÈË(Inviter)£º³Âµ©µ©
Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ
»ã±¨ÌáÒª£ºMizuno providied 15 examples of generalized rank three Nahm sums with symmetrizer $\mathrm{diag}(1,2,2)$ which are conjecturally modular. Using the theory of Bailey pairs and some $q$-series techniques, we establish a number of triple sum Rogers--Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except for two non-modular cases. We show that the two exceptional cases of Nahm sums are sums of modular forms of weights $0$ and $1$. We also prove Mizuno¡¯s conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers $\mathrm{diag}(1,1,2)$ and $\mathrm{diag}(1,2,2)$.