º¬¹¦·òµ¼ÊýµÄ¼´Ê±ÓëÑÓʱ·ÇÏßÐÔÌìǵǰÌáÏÂMaxwell·½³Ì×éµÄÄÜÁ¿Ë¥¼õÐÍERK-SAV²½Öè

2025.11.05

Ͷ¸å£ºÉÛ·Ü·Ò²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºEnergy-decaying ERK-SAV method for Maxwell's equations under an instantaneous and delayed nonlinear boundary condition with time derivatives£¨º¬¹¦·òµ¼ÊýµÄ¼´Ê±ÓëÑÓʱ·ÇÏßÐÔÌìǵǰÌáÏÂMaxwell·½³Ì×éµÄÄÜÁ¿Ë¥¼õÐÍERK-SAV²½Ö裩

»ã±¨ÈË (Speaker)£ºÒ¦²ý»Ô Èý¼¶½ÌÊÚ¡¢ºÓÄÏÊ¡ÌØÆ¸½ÌÊÚ£¨Ö£ÖÝ´óѧ£©

»ã±¨¹¦·ò (Time)£º2025Äê11ÔÂ12ÈÕ(ÖÜÈý) 9:00

»ã±¨µØÖ· (Place)£º#ÌÚѶ»áÒ飺811-318-158

Ô¼ÇëÈË(Inviter)£ºÀîÐÂÏé

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºIn this talk, we consider Maxwell's equations under an instantaneous and delayed nonlinear boundary condition with time derivatives, which can be proved energy decay theoretically. We design a two-order SAV-ERK scheme and also prove its discrete energy decay. Some numerical examples verified the facts.

¡¾ÍøÕ¾µØÍ¼¡¿