Ä³Ð©Ææ¹Öƫ΢·Ö·½³ÌµÄÎ¨Ò»Â½ÐøÐÔ

2018.05.30

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2018Äê06ÔÂ08ÈÕ 15:30

µØÖ·£º У±¾²¿F307

»ã±¨Ö÷Ìâ£ºÄ³Ð©Ææ¹Öƫ΢·Ö·½³ÌµÄÎ¨Ò»Â½ÐøÐÔ

»ã±¨ÈË£ºÌÕÏéÐË ½ÌÊÚ £¨Õã½­¿Æ¼¼Ñ§Ôº£©

»ã±¨¹¦·ò£º2018Äê6ÔÂ8ÈÕ£¨ÖÜÎ壩15:30

»ã±¨µØÖ·£ºÐ£±¾²¿F307

Ô¼ÇëÈË£ºÕÔ·¢ÓÑ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£º In this talk, we will consider some second order degenerate Schr?dinger operators with singular potentials belonging to the Fefferman-Phong¡¯s class in some domains, we prove the unique continuation properties and the weighted doubling properties for the solutions in the interior of any domains and at the boundary of some Lipschitz domains under the zero Dirchlet boundary condition and zero Neumann boundary condition. The asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions are also considered.

Ó­½ÓÀÏʦ¡¢Ñ§Éú²ÎÓë £¡

¡¾ÍøÕ¾µØÍ¼¡¿