Êýѧϵ¡°60ÖÜÄꡱϵÇìϵÁл㱨 Calderon-Zygmund Ëã×ӵıä²îµÄ L^2 ÓнçÐÔ

2020.07.31

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2020Äê08ÔÂ04ÈÕ 15:00

µØÖ·£º ÌÚѶ »áÒé

»ã±¨Ö÷Ì⣺Calderon-Zygmund Ëã×ӵıä²îµÄ L^2 ÓнçÐÔ

»ã±¨ÈË£º³ÂÑÞÆ¼ ½ÌÊÚ £¨±±¾©¿Æ¼¼´óѧ£©

»ã±¨¹¦·ò£º2020Äê8ÔÂ4ÈÕ£¨Öܶþ£© 15:00-17:00

²Î»á·½Ê½£ºÌÚѶ »áÒé

https://meeting.tencent.com/s/tvE9xNsPeYBB

»áÒéID£º921 743 370

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºIn this talk, we shall show the $L^2$-boundedness for the jump functions and variations of Calder\'on-Zygmund singular integral operators. This result should be the first general criteria for the variational inequalities for kernels not necessarily of convolution type. The $L^2$-boundedness assumption that we verified here is also the starting point of the related results on the (sharp) weighted norm inequalities appeared in many recent papers.

 

Ó­½ÓÀÏʦ¡¢Ñ§Éú²ÎÓ룡

¡¾ÍøÕ¾µØÍ¼¡¿