º£É­±¤ÈºÉÏÓë´øÆ¯ÒÆÏî´ÎÀ­ÆÕÀ­Ë¹Ëã×ÓÓйصÄÀè´Ä±ä»»µÄ¶Ëµã¹À¼Æ

2020.10.23

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2020Äê10ÔÂ31ÈÕ 09:00

µØÖ·£º ÌÚѶ»áÒé

»ã±¨Ö÷Ì⣺º£É­±¤ÈºÉÏÓë´øÆ¯ÒÆÏî´ÎÀ­ÆÕÀ­Ë¹Ëã×ÓÓйصÄÀè´Ä±ä»»µÄ¶Ëµã¹À¼Æ

±¨ ¸æ ÈË£ºÀîºéÈ« ½ÌÊÚ £¨¸´µ©´óѧ£©

»ã±¨¹¦·ò£º2020Äê10ÔÂ31ÈÕ£¨ÖÜÁù£© 9:00

²Î»á·½Ê½£ºÌÚѶ»áÒé

»áÒéID£º704 968 833

Ñû Çë ÈË£ºÕÔ·¢ÓÑ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºIn the Heisenberg group of dimension 2n+1, we consider the sub-Laplacian with a drift in the horizontal coordinates. There is a related measure for which this operator is symmetric. The corresponding Riesz transforms are known to be $L^p$ bounded with respect to this measure. We prove that the Riesz transforms of order 1 are also of weak type $(1,1)$. This is based on joint work with P. Sj\"ogren.

 

Ó­½ÓÀÏʦ¡¢Ñ§Éú²ÎÓ룡

¡¾ÍøÕ¾µØÍ¼¡¿