ÓµÓÐHardyÎ»ÊÆµÄ¸ß½×ºÍ·ÖÊý½×Ëã×ÓµÄKato»¬ÈóºÍStrichartz¹À¼Æ

2020.11.02

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2020Äê11ÔÂ07ÈÕ 09:00

µØÖ·£º ÌÚѶ»áÒé

»ã±¨Ö÷Ì⣺ӵÓÐHardyÎ»ÊÆµÄ¸ß½×ºÍ·ÖÊý½×Ëã×ÓµÄKato»¬ÈóºÍStrichartz¹À¼Æ

±¨ ¸æ ÈË£ºÒ¢Ó×»ª ½ÌÊÚ £¨»ªÖÐʦ·¶´óѧ£©

»ã±¨¹¦·ò£º2020Äê11ÔÂ7ÈÕ£¨ÖÜÁù£© 9:00

²Î»á·½Ê½£ºÌÚѶ»áÒé

»áÒéID£º458 671 203

Ñû Çë ÈË£ºÕÔ·¢ÓÑ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºLet 0<\sigma<n/2 and H=(-\Delta)^\sigma +V(x) be Schr\"odinger type operators with certain scaling-critical potentials V(x), which include the Hardy potential C|x|^{-2\sigma} with a subcritical coupling constant C as typical examples. In this talk, we consider several global estimates for the resolvent and the solution to the time-dependent Schr\"odinger equation associated with H. We first prove the uniform resolvent estimates of Kato-Yajima type for all 0<\sigma<n/2 using a version of Mourre's theory, which turn out to be equivalent to Kato smoothing estimates for the Cauchy problem. Using these estimates, we then obtain Strichartz estimates for \sigma>1/2 and uniform Sobolev estimates of Kenig-Ruiz-Sogge type for \sigma\ge n/(n+1). These completely extend the same properties for the Schr\"odinger operator with the inverse-square potential to the higher-order and fractional cases. Moreover, we point out that these arguments can be further applied to a large class of higher-order inhomogeneous elliptic operators and even to certain long-range metric perturbations of the Laplace operator.

 

Ó­½ÓÀÏʦ¡¢Ñ§Éú²ÎÓ룡

¡¾ÍøÕ¾µØÍ¼¡¿