Á¿×ÓȺÓëq-Êæ¶û´úÊý

2021.11.16

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2021Äê11ÔÂ19ÈÕ 16:00

µØÖ·£º У±¾²¿G507

»ã±¨±êÌâ (Title)£ºÁ¿×ÓȺÓëq-Êæ¶û´úÊý£¨ON QUANTUM GROUPS ANDq-SCHUR ALGEBRAS£©

»ã±¨ÈË (Speaker)£º ¸¶Ç¿½ÌÊÚ£¨Í¬¼Ã´óѧ£©

»ã±¨¹¦·ò (Time)£º2021Äê11ÔÂ19ÈÕ(ÖÜÎå)16:00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿G507

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºAccording to Drinfeld, a quantum group is the same as a Hopf algebra. Although semisimple Lie algebras cannot be deformed in a non-trivial way, their enveloping algebras admit a quantum deformation depending on a parameterv. These are the quantized enveloping algebras of Drinfeld and Jimbo. In this lecture we will give a introduction of quantum groups and the relation between quantum groups andq-Schur algebras.

¡¾ÍøÕ¾µØÍ¼¡¿