Òñ¶ÈºÍ»®·Ö

2022.04.02

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2022Äê04ÔÂ01ÈÕ 15:30

µØÖ·£º ÌÚѶ»áÒé

»ã±¨Ö÷Ì⣺Òñ¶ÈºÍ»®·Ö£¨Arboricity and Partition£©

±¨ ¸æ ÈË£ºÍõά·² ½ÌÊÚ£¨Õ㽭ʦ·¶´óѧ£©

»ã±¨¹¦·ò£º2022Äê4ÔÂ1ÈÕ£¨ÖÜÎ壩 15:30

²Î»á·½Ê½£ºÌÚѶ»áÒé

»áÒéID£º265-459-943

Ô¼ÇëÈË£º¿Â·öÓ¢

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£º

For a positive integer n, the linear n-arboricity of a graph is the least number k such that it can be edge-partitioned into k forests, whose component trees are paths of length at most n. When n is infinite, the corresponding parameter is called the linear arboricity of graphs. In this talk, we give a survey on the research progress on the arboricity, linear arboricity, linear 2-arboricity and other edge-partition problems of graphs. Some open problems will be provided.

¡¾ÍøÕ¾µØÍ¼¡¿